Evolutionary radiations in the species-rich mountain genus Saxifraga L.

54Citations
Citations of this article
67Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: A large number of taxa have undergone evolutionary radiations in mountainous areas, rendering alpine systems particularly suitable to study the extrinsic and intrinsic factors that have shaped diversification patterns in plants. The species-rich genus Saxifraga L. is widely distributed throughout the Northern Hemisphere, with high species numbers in the regions adjacent to the Qinghai-Tibet Plateau (QTP) in particular the Hengduan Mountains and the Himalayas. Using a dataset of 297 taxa (representing at least 60% of extant Saxifraga species), we explored the variation of infrageneric diversification rates. In addition, we used state-dependent speciation and extinction models to test the effects of geographic distribution in the Hengduan Mountains and the entire QTP region as well as of two morphological traits (cushion habit and specialized lime-secreting glands, so-called hydathodes) on the diversification of this genus. Results: We detected two to three rate shifts across the Saxifraga phylogeny and two of these shifts led to radiations within two large subclades of Saxifraga, sect. Ciliatae Haworth subsect. Hirculoideae Engl. & Irmsch. and sect. Porphyrion Tausch subsect. Kabschia Engl. GEOSSE analyses showed that presence in the Hengduan Mountains had a positive effect on diversification across Saxifraga. Influence of these mountains was strongest in Saxifraga sect. Ciliatae subsect. Hirculoideae given its pronounced distribution there, and thus the radiation in this group can be classified at least partially as geographic. In contrast, the evolution of the cushion life form and lime-secreting hydathodes had positive effects on diversification only in selected Saxifraga sections, including sect. Porphyrion subsect. Kabschia. We therefore argue that radiation in this group was likely adaptive. Conclusions: Our study underlines the complexity of processes and factors underpinning plant radiations: Even in closely related lineages occupying the same life zone, shifts in diversification are not necessarily governed by similar factors. In conclusion, alpine plant radiations result from a complex interaction among geographical settings and/or climatic modifications providing key opportunities for diversification as well as the evolution of key innovations.

Cite

CITATION STYLE

APA

Ebersbach, J., Schnitzler, J., Favre, A., & Muellner-Riehl, A. N. (2017). Evolutionary radiations in the species-rich mountain genus Saxifraga L. BMC Evolutionary Biology, 17(1). https://doi.org/10.1186/s12862-017-0967-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free