Support Vector Machine (SVM) dan Naïve Bayes Classifier (NBC) merupakan dua algoritma yang sangat polpuler untuk text mining, khususnya untuk klasifikasi teks. Pada penelitian-penelitian sebelumnya SVM cenerung menghasilkan performa yang lebih baik dari NBC pada segi akurasi hasil klasifikasi. Salah satu hal yang menarik dari penelitian-penelitian sebelumnya adalah penggunaan jenis data yang hamper sama antara satu dengan lainnya. Penelitian-penelitian sebelumnya kebanyakan menggunakan data tweet dari situs Twitter. Data tweet merupakan jenis teks yang informal dengan banyak sekali noise dan tidak mengindahkan aturan tata bahasa. Pada penelitian kali ini, akan algoritma SVM dan NBC akan diujicobakan kedalam data teks yang lebih formal, yakni data dari judul-judul artikel. Dalam percobaan yang sudah dilakukan, didapatkan hasil yang berbeda dengan penelitian sebelumnya. Pada klasifikasi teks judul artikel NBC memiliki performa akurasi yang lebih baik jika dibandingkan dengan SVM.
CITATION STYLE
Maarif, M. R. (2016). Perbandingan Naïve Bayes Classifier dan Support Vector Machine untuk Klasifikasi Judul Artikel. JISKA (Jurnal Informatika Sunan Kalijaga), 1(2), 90–93. https://doi.org/10.14421/jiska.2016.12-05
Mendeley helps you to discover research relevant for your work.