Brain network clustering with information flow motifs

18Citations
Citations of this article
32Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Recent work has revealed frequency-dependent global patterns of information flow by a network analysis of magnetoencephalography data of the human brain. However, it is unknown which properties on a small subgraph-scale of those functional brain networks are dominant at different frequencies bands. Motifs are the building blocks of networks on this level and have previously been identified as important features for healthy and abnormal brain function. In this study, we present a network construction that enables us to search and analyze motifs in different frequency bands. We give evidence that the bi-directional two-hop path is the most important motif for the information flow in functional brain networks. A clustering based on this motif exposes a spatially coherent yet frequency-dependent sub-division between the posterior, occipital and frontal brain regions.

Cite

CITATION STYLE

APA

Märtens, M., Meier, J., Hillebrand, A., Tewarie, P., & Van Mieghem, P. (2017). Brain network clustering with information flow motifs. Applied Network Science, 2(1). https://doi.org/10.1007/s41109-017-0046-z

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free