Mechanisms underlying TARP modulation of the GluA1/2-γ8 AMPA receptor

20Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

AMPA-type glutamate receptors (AMPARs) mediate rapid signal transmission at excitatory synapses in the brain. Glutamate binding to the receptor’s ligand-binding domains (LBDs) leads to ion channel activation and desensitization. Gating kinetics shape synaptic transmission and are strongly modulated by transmembrane AMPAR regulatory proteins (TARPs) through currently incompletely resolved mechanisms. Here, electron cryo-microscopy structures of the GluA1/2 TARP-γ8 complex, in both open and desensitized states (at 3.5 Å), reveal state-selective engagement of the LBDs by the large TARP-γ8 loop (‘β1’), elucidating how this TARP stabilizes specific gating states. We further show how TARPs alter channel rectification, by interacting with the pore helix of the selectivity filter. Lastly, we reveal that the Q/R-editing site couples the channel constriction at the filter entrance to the gate, and forms the major cation binding site in the conduction path. Our results provide a mechanistic framework of how TARPs modulate AMPAR gating and conductance.

Cite

CITATION STYLE

APA

Herguedas, B., Kohegyi, B. K., Dohrke, J. N., Watson, J. F., Zhang, D., Ho, H., … Greger, I. H. (2022). Mechanisms underlying TARP modulation of the GluA1/2-γ8 AMPA receptor. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-28404-7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free