Commonsense knowledge used by humans while doing online shopping is valuable but difficult to be captured by existing systems running on e-commerce platforms. While construction of common- sense knowledge graphs in e-commerce is non-trivial, representation learning upon such graphs poses unique challenge compared to well-studied open-domain knowledge graphs (e.g., Freebase). By leveraging the commonsense knowledge and representation techniques, various applications in e-commerce can be benefited. Based on AliCoCo, the large-scale e-commerce concept net assisting a series of core businesses in Alibaba, we further enrich it with more commonsense relations and present AliCoCo2, the first commonsense knowledge graph constructed for e-commerce use. We propose a multi-task encoder-decoder framework to provide effective representations for nodes and edges from AliCoCo2. To explore the possibility of improving e-commerce businesses with commonsense knowledge, we apply newly mined commonsense relations and learned embeddings to e-commerce search engine and recommendation system in different ways. Experimental results demonstrate that our proposed representation learning method achieves state-of-the-art performance on the task of knowledge graph completion (KGC), and applications on search and recommendation indicate great potential value of the construction and use of commonsense knowledge graph in e-commerce. Besides, we propose an e-commerce QA task with a new benchmark during the construction of AliCoCo2, for testing machine common sense in e-commerce, which can benefit research community in exploring commonsense reasoning.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Luo, X., Bo, L., Wu, J., Li, L., Luo, Z., Yang, Y., & Yang, K. (2021). AliCoCo2: Commonsense Knowledge Extraction, Representation and Application in E-commerce. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 3385–3393). Association for Computing Machinery. https://doi.org/10.1145/3447548.3467203