Local patch-based methods of object detection and pose estimation are promising. However, to the best of the authors’ knowledge, traditional red-green-blue and depth (RGB-D) patches contain scene interference (foreground occlusion and background clutter) and have little rotation invariance. To solve these problems, a new edge patch is proposed and experimented with in this study. The edge patch is a local sampling RGB-D patch centered at the edge pixel of the depth image. According to the normal direction of the depth edge, the edge patch is sampled along a canonical orientation, making it rotation invariant. Through a process of depth detection, scene interference is eliminated from the edge patch, which improves the robustness. The framework of the edge patch-based method is described, and the method was evaluated on three public datasets. Compared with existing methods, the proposed method achieved a higher average F1-score (0.956) on the Tejani dataset and a better average detection rate (62%) on the Occlusion dataset, even in situations of serious scene interference. These results showed that the proposed method has higher detection accuracy and stronger robustness.
CITATION STYLE
Tong, X., Li, R., Ge, L., Zhao, L., & Wang, K. (2020). A new edge patch with rotation invariance for object detection and pose estimation. Sensors (Switzerland), 20(3). https://doi.org/10.3390/s20030887
Mendeley helps you to discover research relevant for your work.