Induced pluripotent stem cells (iPSCs) derived by in vitro reprogramming of somatic cells retain the capacity to self-renew and to differentiate into many cell types. Pluripotency encompasses multiple states, with naïve iPSCs considered as ground state, possessing high levels of self-renewal capacity and maximum potential without lineage restriction. We showed previously that activation-induced cytidine deaminase (AICDA) facilitates stabilization of pluripotency during reprogramming. Here, we report that Acida−/− iPSCs, even when successfully reprogrammed, fail to achieve the naïve pluripotent state and remain primed for differentiation because of a failure to suppress fibroblast growth factor (FGF)/extracellular signal-regulated kinases (ERK) signaling. Although the mutant cells display marked genomic hypermethylation, suppression of FGF/ERK signaling by AICDA is independent of deaminase activity. Thus, our study identifies AICDA as a novel regulator of naïve pluripotency through its activity on FGF/ERK signaling. Stem Cells 2019;37:1003–1017.
CITATION STYLE
Kumar, R., & Evans, T. (2019). Activation-Induced Cytidine Deaminase Regulates Fibroblast Growth Factor/Extracellular Signal-Regulated Kinases Signaling to Achieve the Naïve Pluripotent State During Reprogramming. Stem Cells, 37(8), 1003–1017. https://doi.org/10.1002/stem.3023
Mendeley helps you to discover research relevant for your work.