Background: Pathological anxiety originates from a complex interplay of genetic predisposition and environmental factors, acting via epigenetic mechanisms. Epigenetic processes that can counteract detrimental genetic risk towards innate high anxiety are not well characterized. Methods: We used female mouse lines of selectively bred high (HAB)- vs low (LAB)-innate anxiety-related behavior and performed select environmental and pharmacological manipulations to alter anxiety levels as well as brain-specific manipulations and immunohistochemistry to investigate neuronal mechanisms associated with alterations in anxiety-related behavior. Results: Inborn hyperanxiety of high anxiety-like phenotypes was effectively reduced by environmental enrichment exposure. c-Fos mapping revealed that hyperanxiety in high anxiety-like phenotypes was associated with blunted challenge-induced neuronal activation in the cingulate-cortex, which was normalized by environmental enrichment. Relating this finding with epigenetic modifications, we found that high anxiety-like phenotypes (compared with low-innate anxiety phenotypes) showed reduced acetylation in the hypoactivated cingulate-cortex neurons following a mild emotional challenge, which again was normalized by environmental enrichment. Paralleling the findings using environmental enrichment, systemic administration of histone-deacetylase-inhibitor MS-275 elicited an anxiolytic-like effect, which was correlated with increased acetylated-histone-3 levels within cingulate-cortex. Finally, as a proof-of-principle, local MS-275 injection into cingulate-cortex rescued enhanced innate anxiety and increased acetylated-histone-3 within the cingulate-cortex, suggesting this epigenetic mark as a biomarker for treatment success. Conclusions: Taken together, the present findings provide the first causal evidence that the attenuation of high innate anxiety-like behavior via environmental/pharmacological manipulations is epigenetically mediated via acetylation changes within the cingulate-cortex. Finally, histone-3 specific histone-deacetylase-inhibitor could be of therapeutic importance in anxiety disorders.
CITATION STYLE
Sah, A., Sotnikov, S., Kharitonova, M., Schmuckermair, C., Diepold, R. P., Landgraf, R., … Singewald, N. (2019). Epigenetic mechanisms within the cingulate cortex regulate innate anxiety-like behavior. International Journal of Neuropsychopharmacology, 22(4), 317–328. https://doi.org/10.1093/ijnp/pyz004
Mendeley helps you to discover research relevant for your work.