Modification of acetoacetyl-CoA reduction step in Ralstonia eutropha for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from structurally unrelated compounds

24Citations
Citations of this article
60Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Poly((R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate) [P(3HB-co-3HHx)] is a bacterial polyester with high biodegradability, even in marine environments. Ralstonia eutropha has been engineered for the biosynthesis of P(3HB-co-3HHx) from vegetable oils, but its production from structurally unrelated carbon sources remains unsatisfactory. Results: Ralstonia eutropha strains capable of synthesizing P(3HB-co-3HHx) from not only fructose but also glucose and glycerol were constructed by integrating previously established engineering strategies. Further modifications were made at the acetoacetyl-CoA reduction step determining flux distribution responsible for the copolymer composition. When the major acetoacetyl-CoA reductase (PhaB1) was replaced by a low-activity paralog (PhaB2) or enzymes for reverse β-oxidation, copolyesters with high 3HHx composition were efficiently synthesized from glucose, possibly due to enhanced formation of butyryl-CoA from acetoacetyl-CoA via (S)-3HB-CoA. P(3HB-co-3HHx) composed of 7.0 mol% and 12.1 mol% 3HHx fractions, adequate for practical applications, were produced at cellular contents of 71.4 wt% and 75.3 wt%, respectively. The replacement by low-affinity mutants of PhaB1 had little impact on the PHA biosynthesis on glucose, but slightly affected those on fructose, suggesting altered metabolic regulation depending on the sugar-transport machinery. PhaB1 mostly acted in the conversion of acetoacetyl-CoA when the cells were grown on glycerol, as copolyester biosynthesis was severely impaired by the lack of phaB1. Conclusions: The present results indicate the importance of flux distribution at the acetoacetyl-CoA node in R. eutropha for the biosynthesis of the PHA copolyesters with regulated composition from structurally unrelated compounds.

Cite

CITATION STYLE

APA

Zhang, M., Kurita, S., Orita, I., Nakamura, S., & Fukui, T. (2019). Modification of acetoacetyl-CoA reduction step in Ralstonia eutropha for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from structurally unrelated compounds. Microbial Cell Factories, 18(1). https://doi.org/10.1186/s12934-019-1197-7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free