Reinforced concrete (RC) structures typically present brittle failures by shear or punching under impact loading. High-performance fiber-reinforced concrete (HPFRC) has great potential due to its superior strength and energy absorption. The higher price and environmental cost of HPFRC compared to conventional RC can be effectively overcome by partially strengthening impact-sensitive RC members with HPFRC. To study the feasibility of this technique, HPFRC was applied as a tensile layer at the bottom of RC beams. Drop weight impact tests were carried out on beams with two values (35 and 55 mm) of HPFRC thickness, in addition to companion RC beams. Results show that the impact response can be divided into two stages: a first stage governed by local effects and shear plug formation at midspan, and a second stage governed by global beam behavior with formation of shear web cracks. A new resisting mechanism was observed for beams strengthened with HPFRC, as the strengthening layer worked similarly to a stress ribbon retaining the damaged RC and reducing fragmentation-induced debris. Such mechanism was fully achieved by the specimens with 35 mm HPFRC layer but was limited for the specimens with 55 mm HPFRC layer due to impact-induced interface debonding.
CITATION STYLE
Zanuy, C., & Ulzurrun, G. S. D. (2020). Impact resisting mechanisms of shear-critical reinforced concrete beams strengthened with high-performance FRC. Applied Sciences (Switzerland), 10(9). https://doi.org/10.3390/app10093154
Mendeley helps you to discover research relevant for your work.