Genomic features of “Candidatus Venteria ishoeyi”, a new sulfur-oxidizing macrobacterium from the Humboldt Sulfuretum off Chile

6Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

The Humboldt Sulfuretum (HS), in the productive Humboldt Eastern Boundary Current Upwelling Ecosystem, extends under the hypoxic waters of the Peru-Chile Undercurrent (ca. 6S and ca. 36S). Studies show that primeval sulfuretums held diverse prokaryotic life, and, while rare today, still sustain species-rich giant sulfur-oxidizing bacterial communities. We here present the genomic features of a new bacteria of the HS, “Candidatus Venteria ishoeyi” (“Ca. V. ishoeyi”) in the family Thiotrichaceae.Three identical filaments were micro-manipulated from reduced sediments collected off central Chile; their DNA was extracted, amplified, and sequenced by a Roche 454 GS FLX platform. Using three sequenced libraries and through de novo genome assembly, a draft genome of 5.7 Mbp, 495 scaffolds, and a N50 of 70 kbp, was obtained. The 16S rRNA gene phylogenetic analysis showed that “Ca. V. ishoeyi” is related to non-vacuolate forms presently known as Beggiatoa or Beggiatoa-like forms. The complete set of genes involved in respiratory nitrate-reduction to dinitrogen was identified in “Ca. V. ishoeyi”; including genes likely leading to ammonification. As expected, the sulfur-oxidation pathway reported for other sulfur-oxidizing bacteria were deduced and also, key inorganic and organic carbon acquisition related genes were identified. Unexpectedly, the genome of “Ca. V. ishoeyi” contained numerous CRISPR repeats and an I-F CRISPR-Cas type system gene coding array. Findings further show that, as a member of an eons-old marine ecosystem, “Ca. V. ishoeyi” contains the needed metabolic plasticity for life in an increasingly oxygenated and variable ocean.

Cite

CITATION STYLE

APA

Fonseca, A., Ishoey, T., Espinoza, C., Pérez-Pantoja, D., Manghisi, A., Morabito, M., … Gallardo, V. A. (2017). Genomic features of “Candidatus Venteria ishoeyi”, a new sulfur-oxidizing macrobacterium from the Humboldt Sulfuretum off Chile. PLoS ONE, 12(12). https://doi.org/10.1371/journal.pone.0188371

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free