Incomplete spinal cord injury (SCI) elicits structural plasticity of the spared motor system, including the motor cortex, which may underlie some of the spontaneous recovery of motor function seen after injury. Promoting structural plasticity may become an important component of future strategies to improve functional outcomes. We have recently observed dynamic changes in the density and morphology of dendritic spines in the motor cortex following SCI. The present study sought to test whether SCI-induced changes in spine density and morphology could be modulated by potential strategies to enhance functional recovery. We examined the effects of enriched environment, transplants, and neurotrophin-3 on the plasticity of synaptic structures in the motor cortex following SCI. Housing rats in an enriched environment increased spine density in the motor cortex regardless of injury. SCI led to a more slender and elongated spine morphology. Enriched housing mitigated the SCI-induced morphological alterations, suggesting that the environmental modification facilitates maturation of synaptic structures. Transplantation of embryonic spinal cord tissue and delivery of neurotrophin-3 at the injury site further increased spine density when combined with enriched housing. This combinatorial treatment completely abolished the injury-induced changes, restoring a preinjury pattern of spine morphology. These results demonstrated that remodeling of dendritic spines in the motor cortex after SCI can be modulated by enriched housing, and the combinatorial treatment with embryonic transplants and neurotrophin-3 can potentiate the effects of enriched housing. We suggest that synaptic remodeling processes in the motor cortex can be targeted for an intervention to enhance functional recovery after SCI. © 2008 Wiley-Liss, Inc.
CITATION STYLE
Kim, B. G., Dai, H. N., McAtee, M., & Bregman, B. S. (2008). Modulation of dendritic spine remodeling in the motor cortex following spinal cord injury: Effects of environmental enrichment and combinatorial treatment with transplants and neurotrophin-3. Journal of Comparative Neurology, 508(3), 473–486. https://doi.org/10.1002/cne.21686
Mendeley helps you to discover research relevant for your work.