A mechanomyography muscle contraction (MC) sensor, affixed to the skin surface, was used to quantify muscle tension during repetitive functional electrical stimulation (FES)-evoked isometric rectus femoris contractions to fatigue in individuals with spinal cord injury (SCI). Nine persons with motor complete SCI were seated on a commercial muscle dynamometer that quantified peak torque and average torque outputs, while measurements from the MC sensor were simultaneously recorded. MC-sensor-predicted measures of dynamometer torques, including the signal peak (SP) and signal average (SA), were highly associated with isometric knee extension peak torque (SP: r = 0.91, p < 0.0001), and average torque (SA: r = 0.89, p < 0.0001), respectively. Bland-Altman (BA) analyses with Lin’s concordance (ρC) revealed good association between MC-sensor-predicted peak muscle torques (SP; ρC = 0.91) and average muscle torques (SA; ρC = 0.89) with the equivalent dynamometer measures, over a range of FES current amplitudes. The relationship of dynamometer torques and predicted MC torques during repetitive FES-evoked muscle contraction to fatigue were moderately associated (SP: r = 0.80, p < 0.0001; SA: r = 0.77; p < 0.0001), with BA associations between the two devices fair-moderate (SP; ρC = 0.70: SA; ρC = 0.30). These findings demonstrated that a skin-surface muscle mechanomyography sensor was an accurate proxy for electrically-evoked muscle contraction torques when directly measured during isometric dynamometry in individuals with SCI. The novel application of the MC sensor during FES-evoked muscle contractions suggested its possible application for real-world tasks (e.g., prolonged sit-to-stand, stepping,) where muscle forces during fatiguing activities cannot be directly measured.
CITATION STYLE
Mohamad, N. Z., Hamzaid, N. A., Davis, G. M., Abdul Wahab, A. K., & Hasnan, N. (2017). Mechanomyography and torque during FES-evoked muscle contractions to fatigue in individuals with spinal cord injury. Sensors (Switzerland), 17(7). https://doi.org/10.3390/s17071627
Mendeley helps you to discover research relevant for your work.