Cardiomyocyte hypertrophy and extracellular matrix remodeling, primarily mediated by inflammatory cytokine-stimulated cardiac fibroblasts, are critical cellular events in cardiac pathology. The molecular components governing these processes remain nebulous, and few genes have been linked to both hypertrophy and matrix remodeling. Here we show that p8, a small stress-inducible basic helix-loop-helix protein, is required for endothelin- and alpha-adrenergic agonist-induced cardiomyocyte hypertrophy and for tumor necrosis factor-stimulated induction, in cardiac fibroblasts, of matrix metalloproteases (MMPs) 9 and 13-MMPs linked to general inflammation and to adverse ventricular remodeling in heart failure. In a stimulus-dependent manner, p8 associates with chromatin containing c-Jun and with the cardiomyocyte atrial natriuretic factor (anf) promoter and the cardiac fibroblast mmp9 and mmp13 promoters, established activator protein 1 effectors. p8 is also induced strongly in the failing human heart by a process reversed upon therapeutic intervention. Our results identify an unexpectedly broad involvement for p8 in key cellular events linked to cardiomyocyte hypertrophy and cardiac fibroblast MMP production, both of which occur in heart failure.
CITATION STYLE
Goruppi, S., Patten, R. D., Force, T., & Kyriakis, J. M. (2007). Helix-Loop-Helix Protein p8, a Transcriptional Regulator Required for Cardiomyocyte Hypertrophy and Cardiac Fibroblast Matrix Metalloprotease Induction. Molecular and Cellular Biology, 27(3), 993–1006. https://doi.org/10.1128/mcb.00996-06
Mendeley helps you to discover research relevant for your work.