Dihydroxynaphthalene-Based Allomelanins: A Source of Inspiration for Innovative Technological Materials

10Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Melanins are a wide class of natural pigments biosynthesized by different kinds of living organisms throughout all of the life domains, from bacteria to fungi, plants, and mammals. The biological functions played by these natural pigments are different (i.e., camouflage, radioprotection, thermoregulation) and ascribable to a peculiar set of physical-chemical properties making melanins a unique class of biopolymers. Among these, allomelanins from 1,8-dihydroxynaphthalene (1,8-DHNmel) produced by some Ascomycetes have recently attracted particular interest for their robustness and ability to protect fungi against both hostile (i.e., attack from fungicidal agents) and extreme (i.e., high energy radiations) environments. Starting from this background, in this mini-review we offer a panorama of the recent advances on the oxidative chemistry of 1,8-DHN leading to the formation of allomelanin mimics with tailored structural and functional properties for technological applications.

Cite

CITATION STYLE

APA

Lino, V., & Manini, P. (2022, May 10). Dihydroxynaphthalene-Based Allomelanins: A Source of Inspiration for Innovative Technological Materials. ACS Omega. American Chemical Society. https://doi.org/10.1021/acsomega.2c00641

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free