Protection against Myocardial Ischemia/Reperfusion Injury in TLR4-Deficient Mice Is Mediated through a Phosphoinositide 3-Kinase-Dependent Mechanism

  • Hua F
  • Ha T
  • Ma J
  • et al.
148Citations
Citations of this article
45Readers
Mendeley users who have this article in their library.

Abstract

TLRs play a critical role in the induction of innate and adaptive immunity. However, TLRs have also been reported to mediate the pathophysiology of organ damage following ischemia/reperfusion (I/R) injury. We have reported that TLR4−/− mice show decreased myocardial injury following I/R; however, the protective mechanisms have not been elucidated. We examined the role of the PI3K/Akt signaling pathway in TLR4−/− cardioprotection following I/R injury. TLR4−/− and age-matched wild-type (WT) mice were subjected to myocardial ischemia for 45 min, followed by reperfusion for 4 h. Pharmacologic inhibitors of PI3K (wortmannin or LY294002) were administered 1 h before myocardial I/R. Myocardial infarct size/area at risk was reduced by 51.2% in TLR4−/− vs WT mice. Cardiac myocyte apoptosis was also increased in WT vs TLR4−/− mice following I/R. Pharmacologic blockade of PI3K abrogated myocardial protection in TLR4−/− mice following I/R. Specifically, heart infarct size/area at risk was increased by 98% in wortmannin and 101% in LY294002-treated TLR4−/− mice, when compared with control TLR4−/− mice. These data indicate that protection against myocardial I/R injury in TLR4−/− mice is mediated through a PI3K/Akt-dependent mechanism. The mechanisms by which PI3K/Akt are increased in the TLR4−/− myocardium may involve increased phosphorylation/inactivation of myocardial phosphatase and tensin homolog deleted on chromosome 10 as well as increased phosphorylation/inactivation of myocardial glycogen synthase kinase-3β. These data implicate innate immune signaling pathways in the pathology of acute myocardial I/R injury. These data also suggest that modulation of TLR4/PI3K/Akt-dependent signaling pathways may be a viable strategy for reducing myocardial I/R injury.

Cite

CITATION STYLE

APA

Hua, F., Ha, T., Ma, J., Li, Y., Kelley, J., Gao, X., … Li, C. (2007). Protection against Myocardial Ischemia/Reperfusion Injury in TLR4-Deficient Mice Is Mediated through a Phosphoinositide 3-Kinase-Dependent Mechanism. The Journal of Immunology, 178(11), 7317–7324. https://doi.org/10.4049/jimmunol.178.11.7317

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free