Features of a Smad3 MH1-DNA Complex

  • Chai J
  • Wu J
  • Yan N
  • et al.
N/ACitations
Citations of this article
8Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The Smad family of proteins mediates transforming growth factor-β signaling from cell membrane to the nucleus. In the nucleus, Smads serve as transcription factors by directly binding to specific DNA sequences and regulating the expression of ligand-response genes. A previous structural analysis, at 2.8-Å resolution, revealed a novel DNA-binding mode for the Smad MH1 domain but did not allow accurate assignment of the fines features of protein-DNA interactions. The crystal structure of a Smad3 MH1 domain bound to a palindromic DNA sequence, determined at 2.4-Å resolution, reveals a surprisingly important role for water molecules. The asymmetric placement of the DNA-binding motif (a conserved 11-residue β-hairpin) in the major groove of DNA is buttressed by seven well ordered water molecules. These water molecules make specific hydrogen bonds to the DNA bases, the DNA phosphate backbones, and several critical Smad3 residues. In addition, the MH1 domain is found to contain a bound zinc atom using four invariant residues among Smad proteins, three cysteines and one histidine. Removal of the zinc atom results in compromised DNA binding activity. These results define the Smad MH1 domain as a zinc-coordinating module that exhibits unique DNA binding properties.

Cite

CITATION STYLE

APA

Chai, J., Wu, J.-W., Yan, N., Massagué, J., Pavletich, N. P., & Shi, Y. (2003). Features of a Smad3 MH1-DNA Complex. Journal of Biological Chemistry, 278(22), 20327–20331. https://doi.org/10.1074/jbc.c300134200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free