Osteosarcoma, a common malignant tumor in orthopedics, often has a very poor prognosis after lung metastasis. Immunotherapy has not achieved much progress in the treatment because of the characteristics of solid tumors and immune environment of osteosarcoma. The tumor environment is rather essential for sarcoma treatment. Our previous study demonstrated that heat shock proteins could be used as antitumor vaccines by carrying tumor antigen peptides, and we hypothesize that an anti-osteosarcoma effect may be increased with an immune check point inhibitor (PD-L1 inhibitor) as a combination treatment strategy. The present study prepared a multisubtype mixed heat shock protein osteosarcoma vaccine (mHSP/peptide vaccine) and concluded that the mHSP/peptide vaccine was more effective than a single subtype heat shock protein, like Grp94. Therefore, we used the mHSP/peptide vaccine in combination with a PD-L1 inhibitor to treat osteosarcoma, and the deterioration of osteosarcoma was effectively hampered. The mechanism of combined therapy was investigated, and AKT expression participates with sarcoma lung metastasis. This study proposed an antisarcoma strategy via stimulation of the immune system as a further alternative approach for sarcoma treatment and elucidated the mechanism of combined therapy.
CITATION STYLE
Li, H., Sui, X., Wang, Z., Fu, H., Wang, Z., Yuan, M., … Guo, Q. (2021). A new antisarcoma strategy: multisubtype heat shock protein/peptide immunotherapy combined with PD-L1 immunological checkpoint inhibitors. Clinical and Translational Oncology, 23(8), 1688–1704. https://doi.org/10.1007/s12094-021-02570-4
Mendeley helps you to discover research relevant for your work.