Reconfigurable intelligent surface (RIS)-assisted non-orthogonal multiple access (NOMA) has the ability to overcome the challenges of the wireless environment like random fluctuations, shadowing, and mobility in an energy efficient way when compared to multiple input-multiple output (MIMO)-NOMA systems. The NOMA system can deliver controlled channel gains, improved coverage, increased energy efficiency, and enhanced fairness in resource allocation with the help of RIS. RIS-assisted NOMA will be one of the primary potential components of sixth-generation (6G) networks, due to its appealing advantages. The analytical outage probability expressions for smart RIS-assisted fixed NOMA (FNOMA) are derived in this paper, taking into account the instances of RIS as a smart reflector (SR) and an access point (AP). The analytical and simulation findings are found to be extremely comparable. In order to effectively maximize the sum capacity, the formulas for optimal powers to be assigned for a two-user case are also established. According to simulations, RIS-assisted FNOMA surpasses FNOMA in terms of outage and sum capacity. With the aid of RIS and the optimal power assignment, RIS-AP-FNOMA offers ≈62% improvement in sum capacity over the FNOMA system for a signal-to-noise ratio (SNR) of 10 dB and 32 elements in RIS. A significant improvement is also brought about by the increase in reflective elements.
CITATION STYLE
Kumaravelu, V. B., Imoize, A. L., Soria, F. R. C., Velmurugan, P. G. S., Thiruvengadam, S. J., Do, D. T., & Murugadass, A. (2023). RIS-Assisted Fixed NOMA: Outage Probability Analysis and Transmit Power Optimization. Future Internet, 15(8). https://doi.org/10.3390/fi15080249
Mendeley helps you to discover research relevant for your work.