Theory and modelling of constant-q p- and s-waves using fractional spatial derivatives

127Citations
Citations of this article
46Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We derive a time-domain differential equation for modelling seismic wave propagation in constant-Q viscoelastic media based on fractional spatial derivatives, specifically Laplacian differential operators of fractional order. The stress-strain relation is derived from the classical equation expressed in terms of fractional time derivatives. The new formulation has the advantage of not requiring additional field variables that increase the computer time and storage significantly. The spatial derivatives are calculated with a generalization of the Fourier pseudospectral method to the fractional-derivative case. The accuracy of the numerical solution is verified against an analytical solution in a homogeneous medium. An example shows that the proposedwave equation describes the constant-Qattenuation and velocity dispersion behaviour observed in Pierre Shale. Finally, we consider a plane-layer model and the Marmousi model to show how the new formulation applies to inhomogeneous media. © The Authors 2013.

Cite

CITATION STYLE

APA

Zhu, T., & Carcione, J. M. (2014). Theory and modelling of constant-q p- and s-waves using fractional spatial derivatives. Geophysical Journal International, 196(3), 1787–1795. https://doi.org/10.1093/gji/ggt483

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free