A study of transfer learning in digital rock properties measurement

0Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The measurement of physical parameters of porous rock, which constitute reservoirs, is an essential part of hydrocarbon exploration. Typically, the measurement of these physical parameters is carried out through core analysis in a laboratory, which requires considerable time and high costs. Another approach involves using digital rock models, where the physical parameters are calculated through image processing and numerical simulations. However, this method also requires a significant amount of time for estimating the physical parameters of each rock sample. Machine learning, specifically convolutional neural network (CNN) algorithms, has been developed as an alternative method for estimating the physical parameters of porous rock in a shorter time frame. The advancement of CNN, particularly through transfer learning using pre-trained models, has contributed to rapid prediction capabilities. However, not all pre-trained models are suitable for estimating the physical parameters of porous rock. In this study, transfer learning was applied to estimate parameters of sandstones such as porosity, specific surface area, average grain size, average coordination number, and average throat radius. Six types of pre-trained models were utilized: ResNet152, DenseNet201, Xception, InceptionV3, InceptionResNetV2, and MobileNetV2. The results of this study indicate that the DenseNet201 model achieved the best performance with an error rate of 2.11%. Overall, this study highlights the potential of transfer learning to ultimately lead to more efficient and effective computation.

Cite

CITATION STYLE

APA

Haq, M. I. K., Yulita, I. N., & Dharmawan, I. A. (2023). A study of transfer learning in digital rock properties measurement. Machine Learning: Science and Technology, 4(3). https://doi.org/10.1088/2632-2153/acf117

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free