The ability of cells to adapt their mechanical properties to those of the surrounding microenvironment (tensional homeostasis) has been implicated in the progression of a variety of solid tumours, including the brain tumour glioblastoma multiforme (GBM). GBM tumour cells are highly sensitive to extracellular matrix (ECM) stiffness and overexpress a variety of focal adhesion proteins, such as talin. While talin has been shown to play critical early roles in integrin-based force-sensing in non-tumour cells, it remains unclear whether this protein contributes to tensional homeostasis in GBM cells. Here, we investigate the role of the talin isoform talin-1 in enabling human GBM cells to adapt to ECM stiffness. We show that human GBM cells express talin-1, and we use RNA interference to suppress talin-1 expression without affecting levels of talin-2, vinculin or phosphorylated focal adhesion kinase. Knockdown of talin-1 strongly reduces both cell spreading area and random migration speed but does not significantly affect overall focal adhesion size distributions. Most strikingly, atomic force microscopy indentation reveals that talin-1 suppression compromises adaptation of cell stiffness to changes in ECM stiffness. Together, these data support a role for talin-1 in the maintenance of tensional homeostasis in GBM and suggest a functional role for enriched talin expression in this tumour. © 2011 The Royal Society.
CITATION STYLE
Sen, S., Ng, W. P., & Kumar, S. (2012). Contributions of talin-1 to glioma cell - Matrix tensional homeostasis. Journal of the Royal Society Interface, 9(71), 1311–1317. https://doi.org/10.1098/rsif.2011.0567
Mendeley helps you to discover research relevant for your work.