Purpose Fibromyalgia (FM) and complex regional pain syndrome (CRPS) share many pathological mechanisms related to chronic pain and neuroinflammation, which may contribute to the multifactorial pathological mechanisms in both FM and CRPS. The aim of this study was to assess neuroinflammation in FM patients compared with that in patients with CRPS and healthy controls. Methods Neuroinflammation was measured as the distribution volume ratio (DVR) of [11C]-(R)- PK11195 positron emission tomography (PET) in 12 FM patients, 11 patients with CRPS and 15 healthy controls. Results Neuroinflammation in FM patients was significantly higher in the left pre (primary motor cortex) and post (primary somatosensory cortex) central gyri (p < 0.001), right postcentral gyrus (p < 0.005), left superior parietal and superior frontal gyri (p < 0.005), left precuneus (p < 0.01), and left medial frontal gyrus (p = 0.036) compared with healthy controls. Furthermore, the DVR of [11C]-(R)-PK11195 in FM patients demonstrated decreased neuroinflammation in the medulla (p < 0.005), left superior temporal gyrus (p < 0.005), and left amygdala (p = 0.020) compared with healthy controls. Conclusions To the authors' knowledge, this report is the first to describe abnormal neuroinflammation levels in the brains of FM patients compared with that in patients with CRPS using [11C]-(R)- PK11195 PET. The results suggested that abnormal neuroinflammation can be an important pathological factor in FM. In addition, the identification of common and different critical regions related to abnormal neuroinflammation in FM, compared with patients with CRPS and healthy controls, may contribute to improved diagnosis and the development of effective medical treatment for patients with FM. Copyright:
CITATION STYLE
Seo, S., Jung, Y. H., Lee, D., Lee, W. J., Jang, J. H., Lee, J. Y., … Kang, D. H. (2021). Abnormal neuroinflammation in fibromyalgia and CRPS using [11C]-(R)-PK11195 PET. PLoS ONE, 16(2 February). https://doi.org/10.1371/journal.pone.0246152
Mendeley helps you to discover research relevant for your work.