Oxygen glucose deprivation/re-oxygenation-induced neuronal cell death is associated with Lnc-D63785 m6A methylation and miR-422a accumulation

62Citations
Citations of this article
38Readers
Mendeley users who have this article in their library.

Abstract

Oxygen glucose deprivation/re-oxygenation (OGD/R) induces neuronal injury via mechanisms that are believed to mimic the pathways associated with brain ischemia. In SH-SY5Y cells and primary murine neurons, we report that OGD/R induces the accumulation of the microRNA miR-422a, leading to downregulation of miR-422a targets myocyte enhancer factor-2D (MEF2D) and mitogen-activated protein kinase kinase 6 (MAPKK6). Ectopic miR-422a inhibition attenuated OGD/R-induced cell death and apoptosis, whereas overexpression of miR-422a induced significant neuronal cell apoptosis. In addition, OGD/R decreased the expression of the long non-coding RNA D63785 (Lnc-D63785) to regulate miR-422a accumulation. Lnc-D63785 directly associated with miR-422a and overexpression of Lnc-D63785 reversed OGD/R-induced miR-422a accumulation and neuronal cell death. OGD/R downregulated Lnc-D63785 expression through increased methyltransferase-like protein 3 (METTL3)-dependent Lnc-D63785 m6A methylation. Conversely METTL3 shRNA reversed OGD/R-induced Lnc-D63785 m6A methylation to decrease miR-422a accumulation. Together, Lnc-D63785 m6A methylation by OGD/R causes miR-422a accumulation and neuronal cell apoptosis.

Cite

CITATION STYLE

APA

Xu, S., Li, Y., Chen, J. ping, Li, D. Z., Jiang, Q., Wu, T., & Zhou, X. zhong. (2020). Oxygen glucose deprivation/re-oxygenation-induced neuronal cell death is associated with Lnc-D63785 m6A methylation and miR-422a accumulation. Cell Death and Disease, 11(9). https://doi.org/10.1038/s41419-020-03021-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free