Mycobacterium tuberculosis inhibits the NLRP3 inflammasome activation via its phosphokinase PknF

40Citations
Citations of this article
50Readers
Mendeley users who have this article in their library.

Abstract

Mycobacterium tuberculosis (Mtb) has evolved to evade host innate immunity by interfering with macrophage functions. Interleukin-1β (IL-1β) is secreted by macrophages after the activation of the inflammasome complex and is crucial for host defense against Mtb infections. We have previously shown that Mtb is able to inhibit activation of the AIM2 inflammasome and subsequent pyroptosis. Here we show that Mtb is also able to inhibit host cell NLRP3 inflammasome activation and pyroptosis. We identified the serine/threonine kinase PknF as one protein of Mtb involved in the NLRP3 inflammasome inhibition, since the pknF deletion mutant of Mtb induces increased production of IL-1β in bone marrow-derived macrophages (BMDMs). The increased production of IL-1β was dependent on NLRP3, the adaptor protein ASC and the protease caspase-1, as revealed by studies performed in gene-deficient BMDMs. Additionally, infection of BMDMs with the pknF deletion mutant resulted in increased pyroptosis, while the IL-6 production remained unchanged compared to Mtbinfected cells, suggesting that the mutant did not affect the priming step of inflammasome activation. In contrast, the activation step was affected since potassium efflux, chloride efflux and the generation of reactive oxygen species played a significant role in inflammasome activation and subsequent pyroptosis mediated by the Mtb pknF mutant strain. In conclusion, we reveal here that the serine/threonine kinase PknF of Mtb plays an important role in innate immune evasion through inhibition of the NLRP3 inflammasome.

Cite

CITATION STYLE

APA

Rastogi, S., Ellinwood, S., Augenstreich, J., Mayer-Barber, K. D., & Briken, V. (2021). Mycobacterium tuberculosis inhibits the NLRP3 inflammasome activation via its phosphokinase PknF. PLoS Pathogens, 17(7). https://doi.org/10.1371/journal.ppat.1009712

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free