What does the time constant of the pulmonary circulation tell us about the progression of right ventricular dysfunction in pulmonary arterial hypertension?

6Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Compliance (C) and resistance (R) maintain a unique, inverse relationship in the pulmonary circulation, resulting in a constant characteristic time τ = RC that has been observed in healthy subjects as well as patients with pulmonary arterial hypertension (PAH). However, little is known about the dependence of right ventricular (RV) function on the coupled changes in R and C in the context of this inverse relationship. We hypothesized three simple dependencies of RV ejection fraction (RVEF) on R and C. The first model (linear-R) assumes a linear RVEF-R relation; the second (linear-C) assumes a linear RVEF-C relation; and the third one combines the former two in a mixed linear model. We found that the linear-R model and the mixed linear model are in good agreement with clinical evidence. A conclusive validation of these models will require more clinical data. Longitudinal data in particular are needed to identify the time course of ventricular-vascular impairment in PAH. Simple models like the ones we present here, once validated, will advance our understanding of the mechanisms of RV failure, which could improve strategies to manage RV dysfunction in PAH.

Cite

CITATION STYLE

APA

Bellofiore, A., Wang, Z., & Chesler, N. C. (2015). What does the time constant of the pulmonary circulation tell us about the progression of right ventricular dysfunction in pulmonary arterial hypertension? Pulmonary Circulation, 5(2), 291–295. https://doi.org/10.1086/680358

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free