Total variation-based dense depth from multicamera array

  • Javidnia H
  • Corcoran P
1Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.
Get full text

Abstract

© 2018 Society of Photo-Optical Instrumentation Engineers (SPIE). Multicamera arrays are increasingly employed in both consumer and industrial applications, and various passive techniques are documented to estimate depth from such camera arrays. Current depth estimation methods provide useful estimations of depth in an imaged scene but are often impractical due to significant computational requirements. This paper presents a framework that generates a high-quality continuous depth map from multicamera array/light-field cameras. The proposed framework utilizes analysis of the local epipolar plane image to initiate the depth estimation process. The estimated depth map is then refined using total variation minimization based on the Fenchel-Rockafellar duality. Evaluation of this method based on a well-known benchmark indicates that the proposed framework performs well in terms of accuracy when compared with the top-ranked depth estimation methods and a baseline algorithm. The test dataset includes both photorealistic and nonphotorealistic scenes. Notably, the computational requirements required to achieve an equivalent accuracy are significantly reduced when compared with the top algorithms. As a consequence, the proposed framework is suitable for deployment in consumer and industrial applications.

Cite

CITATION STYLE

APA

Javidnia, H., & Corcoran, P. (2018). Total variation-based dense depth from multicamera array. Optical Engineering, 57(06), 1. https://doi.org/10.1117/1.oe.57.6.063105

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free