Deceptive information in online news and social media has had dramatic effect on our society in recent years. This study is the first to gain deeper insights into writers' intent behind digital misinformation by analyzing psycholinguistic signals: moral foundations and connotations extracted from different types of deceptive news ranging from strategic disinformation to propaganda and hoaxes. To ensure consistency of our findings and generalizability across domains, we experiment with data from: (1) confirmed cases of disinformation in news summaries, (2) propaganda, hoax, and disinformation news pages, and (3) social media news. We first contrast lexical markers of biased language, syntactic and stylistic signals, and connotations across deceptive news types including disinformation, propaganda, and hoaxes, and deceptive strategies including misleading or falsification. We then incorporate these insights to build machine learning and deep learning predictive models to infer deception strategies and deceptive news types. Our experimental results demonstrate that unlike earlier work on deception detection, content combined with biased language markers, moral foundations, and connotations leads to better predictive performance of deception strategies compared to syntactic and stylistic signals (as reported in earlier work on deceptive reviews). Falsification strategy is easier to identify than misleading strategy. Disinformation is more difficult to predict than to propaganda or hoaxes. Deceptive news types (disinformation, propaganda, and hoaxes), unlike deceptive strategies (falsification and misleading), are more salient, and thus easier to identify in tweets than in news reports. Finally, our novel connotation analysis across deception types provides deeper understanding of writers' perspectives and therefore reveals the intentions behind digital misinformation.
CITATION STYLE
Volkova, S., & Jang, J. Y. (2018). Misleading or Falsification: Inferring Deceptive Strategies and Types in Online News and Social Media. In The Web Conference 2018 - Companion of the World Wide Web Conference, WWW 2018 (pp. 575–583). Association for Computing Machinery, Inc. https://doi.org/10.1145/3184558.3188728
Mendeley helps you to discover research relevant for your work.