Accurately predicting temperature distribution in flashover fire is a key issue for evacuation and fire-fighting. Now many good flashover fire experiments have be conducted, but most of these experiments are proceeded in enclosure with fixed openings; researches on fire development and temperature distribution in flashover caused by backdraft fire did not receive enough attention. In order to study flashover phenomenon caused by backdraft fire, a full-scale fire experiment was conducted in one abandoned office building. Process of fire development and temperature distribution in room and corridor were separately recorded during the experiment. The experiment shows that fire development in enclosure is closely affected by the room ventilation. Unlike existing temperature curves which have only one temperature peak, temperature in flashover caused by backdraft may have more than one peak value and that there is a linear relationship between maximum peak temperature and distance away from fire compartment. Based on BFD curve and experimental data, mathematical models are proposed to predict temperature curve in flashover fire caused by backdraft at last. These conclusions and experiment data obtained in this paper could provide valuable reference to fire simulation, hazard assessment, and fire protection design. © 2014 Guowei Zhang et al.
CITATION STYLE
Zhang, G., Zhu, G., Yuan, G., & Huang, L. (2014). Methods for prediction of temperature distribution in flashover caused by backdraft fire. Mathematical Problems in Engineering, 2014. https://doi.org/10.1155/2014/707423
Mendeley helps you to discover research relevant for your work.