The morphology of nanomaterials has a great influence on the catalytic performance. One-dimensional (1D) nanomaterials have been widely used in the field of catalysis due to their unique linear morphology with large specific surface area, high electron-hole separation efficiency, strong light absorption capacity, plentiful exposed active sites, and so on. In this review, we summarized the recent progress of 1D nanomaterials by focusing on the applications in photocatalysis and electrocatalysis. We highlighted the advanced characterization techniques, such as scanning tunneling microscopy (STM), atomic force microscopy (AFM), surface photovoltage microscopy (SPVM), single-molecule fluorescence microscopy (SMFM), and a variety of combined characterization methods, which have been used to identify the catalytic action of active sites and reveal the mechanism of 1D nanomaterials. Finally, the challenges and future directions of the research on the catalytic mechanism of single-particle 1D nanomaterials are prospected. To our best knowledge, there is no review on the application of single-molecule or single-particle characterization technology to 1D nanomaterial catalysis at present. This review provides a systematic introduction to the frontier field and opens the way for the 1D nanomaterial catalysis.
CITATION STYLE
Gao, T., Duan, P., Zhang, Q., & Yuan, S. (2021, December 17). Application of One-Dimensional Nanomaterials in Catalysis at the Single-Molecule and Single-Particle Scale. Frontiers in Chemistry. Frontiers Media S.A. https://doi.org/10.3389/fchem.2021.812287
Mendeley helps you to discover research relevant for your work.