A fast SCOP fold classification system using content-based E-Predict algorithm

12Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

Abstract

Background: Domain experts manually construct the Structural Classification of Protein (SCOP) database to categorize and compare protein structures. Even though using the SCOP database is believed to be more reliable than classification results from other methods, it is labor intensive. To mimic human classification processes, we develop an automatic SCOP fold classification system to assign possible known SCOP folds and recognize novel folds for newly-discovered proteins. Results: With a sufficient amount of ground truth data, our system is able to assign the known folds for newly-discovered proteins in the latest SCOP v1.69 release with 92.17%. accuracy. Our system also recognizes the novel folds with 89.27% accuracy using 10 fold cross validation. The average response time for proteins with 500 and 1409 amino acids to complete the classification process is 4.1 and 17.4 seconds, respectively. By comparison with several structural alignment algorithms, our approach outperforms previous methods on both the classification accuracy and efficiency. Conclusion: In this paper, we build an advanced, non-parametric classifier to accelerate the manual classification processes of SCOP. With satisfactory ground truth data from the SCOP database, our approach identifies relevant domain knowledge and yields reasonably accurate classifications. Our system is publicly accessible at http://ProteinDBS.rnet.missouri.edu/E-Predict.php. © 2006 Chi et al; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Chi, P. H., Shyu, C. R., & Xu, D. (2006). A fast SCOP fold classification system using content-based E-Predict algorithm. BMC Bioinformatics, 7. https://doi.org/10.1186/1471-2105-7-362

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free