Unknown cell class distinction via neural network based scattering snapshot recognition

  • Cioffi G
  • Dannhauser D
  • Rossi D
  • et al.
2Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Neural network-based image classification is widely used in life science applications. However, it is essential to extrapolate a correct classification method for unknown images, where no prior knowledge can be utilised. Under a closed set assumption, unknown images will be inevitably misclassified, but this can be genuinely overcome choosing an open-set classification approach, which first generates an in-distribution of identified images to successively discriminate out-of-distribution images. The testing of such image classification for single cell applications in life science scenarios has yet to be done but could broaden our expertise in quantifying the influence of prediction uncertainty in deep learning. In this framework, we implemented the open-set concept on scattering snapshots of living cells to distinguish between unknown and known cell classes, targeting four different known monoblast cell classes and a single tumoral unknown monoblast cell line. We also investigated the influence on experimental sample errors and optimised neural network hyperparameters to obtain a high unknown cell class detection accuracy. We discovered that our open-set approach exhibits robustness against sample noise, a crucial aspect for its application in life science. Moreover, the presented open-set based neural network reveals measurement uncertainty out of the cell prediction, which can be applied to a wide range of single cell classifications.

Cite

CITATION STYLE

APA

Cioffi, G., Dannhauser, D., Rossi, D., Netti, P. A., & Causa, F. (2023). Unknown cell class distinction via neural network based scattering snapshot recognition. Biomedical Optics Express, 14(10), 5060. https://doi.org/10.1364/boe.492028

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free