A Mapless Local Path Planning Approach Using Deep Reinforcement Learning Framework

15Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

Abstract

The key module for autonomous mobile robots is path planning and obstacle avoidance. Global path planning based on known maps has been effectively achieved. Local path planning in unknown dynamic environments is still very challenging due to the lack of detailed environmental information and unpredictability. This paper proposes an end-to-end local path planner n-step dueling double DQN with reward-based (Formula presented.) -greedy (RND3QN) based on a deep reinforcement learning framework, which acquires environmental data from LiDAR as input and uses a neural network to fit Q-values to output the corresponding discrete actions. The bias is reduced using n-step bootstrapping based on deep Q-network (DQN). The (Formula presented.) -greedy exploration-exploitation strategy is improved with the reward value as a measure of exploration, and an auxiliary reward function is introduced to increase the reward distribution of the sparse reward environment. Simulation experiments are conducted on the gazebo to test the algorithm’s effectiveness. The experimental data demonstrate that the average total reward value of RND3QN is higher than that of algorithms such as dueling double DQN (D3QN), and the success rates are increased by 174%, 65%, and 61% over D3QN on three stages, respectively. We experimented on the turtlebot3 waffle pi robot, and the strategies learned from the simulation can be effectively transferred to the real robot.

Cite

CITATION STYLE

APA

Yin, Y., Chen, Z., Liu, G., & Guo, J. (2023). A Mapless Local Path Planning Approach Using Deep Reinforcement Learning Framework. Sensors, 23(4). https://doi.org/10.3390/s23042036

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free