Chebyshev-Fourier spectral methods for nonperiodic boundary value problems

6Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

Abstract

A new class of spectral methods for solving two-point boundary value problems for linear ordinary differential equations is presented in the paper. Although these methods are based on trigonometric functions, they can be used for solving periodic as well as nonperiodic problems. Instead of using basis functions periodic on a given interval - 1,1, we use functions periodic on a wider interval. The numerical solution of the given problem is sought in terms of the half-range Chebyshev-Fourier (HCF) series, a reorganization of the classical Fourier series using half-range Chebyshev polynomials of the first and second kind which were first introduced by Huybrechs (2010) and further analyzed by Orel and Perne (2012). The numerical solution is constructed as a HCF series via differentiation and multiplication matrices. Moreover, the construction of the method, error analysis, convergence results, and some numerical examples are presented in the paper. The decay of the maximal absolute error according to the truncation number N for the new class of Chebyshev-Fourier-collocation (CFC) methods is compared to the decay of the error for the standard class of Chebyshev-collocation (CC) methods. © 2014 Bojan Orel and Andrej Perne.

Cite

CITATION STYLE

APA

Orel, B., & Perne, A. (2014). Chebyshev-Fourier spectral methods for nonperiodic boundary value problems. Journal of Applied Mathematics, 2014. https://doi.org/10.1155/2014/572694

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free