Ca2+-Dependent and -Independent Calmodulin Binding to the Cytoplasmic Loop of Gap Junction Connexins

3Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

Ca2+/calmodulin (Ca2+/CaM) interaction with connexins (Cx) is well-established; however, the mechanistic basis of regulation of gap junction function by Ca2+/CaM is not fully understood. Ca2+/CaM is predicted to bind to a domain in the C-terminal portion of the intracellular loop (CL2) in the vast majority of Cx isoforms and for a number of Cx-s this prediction has proved correct. In this study, we investigate and characterise both Ca2+/CaM and apo-CaM binding to selected representatives of each of the α, β and γ connexin family to develop a better mechanistic understanding of CaM effects on gap junction function. The affinity and kinetics Ca2+/CaM and apo-CaM interactions of CL2 peptides of β-Cx32, γ-Cx35, α-Cx43, α-Cx45 and α-Cx57 were investigated. All five Cx CL2 peptides were found to have high affinity for Ca2+/CaM with dissociation constants (Kd(+Ca)) from 20 to 150 nM. The limiting rate of binding and the rates of dissociation covered a broad range. In addition, we obtained evidence for high affinity Ca2+-independent interaction of all five peptides with CaM, consistent with CaM remaining anchored to gap junctions in resting cells. However, for the α-Cx45 and α-Cx57 CL2 peptides, Ca2+-dependent association at resting [Ca2+] of 50–100 nM is indicated in these complexes as one of the CaM Ca2+ binding sites displays high affinity with Kd of 70 and 30 nM for Ca2+, respectively. Furthermore, complex conformational changes were observed in peptide-apo-CaM complexes with the structure of CaM compacted or stretched by the peptide in a concentration dependent manner suggesting that the CL2 domain may undergo helix-to-coil transition and/or forms bundles, which may be relevant in the hexameric gap junction. We demonstrate inhibition of gap junction permeability by Ca2+/CaM in a dose dependent manner, further cementing Ca2+/CaM as a regulator of gap junction function. The motion of a stretched CaM–CL2 complex compacting upon Ca2+ binding may bring about the Ca2+/CaM block of the gap junction pore by a push and pull action on the CL2 C-terminal hydrophobic residues of transmembrane domain 3 (TM3) in and out of the membrane.

Cite

CITATION STYLE

APA

Tran, O., Kerruth, S., Coates, C., Kaur, H., Peracchia, C., Carter, T., & Török, K. (2023). Ca2+-Dependent and -Independent Calmodulin Binding to the Cytoplasmic Loop of Gap Junction Connexins. International Journal of Molecular Sciences, 24(4). https://doi.org/10.3390/ijms24044153

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free