Noninvasive imaging is a powerful tool for early diagnosis and monitoring of various disease processes, such as infections. An alarming shortage of infection-selective radiopharmaceuticals exists for overcoming the diagnostic limitations with unspecific tracers such as 67/68Ga-citrate or 18F-FDG. We report here TBIA101, an antimicrobial peptide derivative that was conjugated to DOTA and radiolabeled with 68Ga for a subsequent in vitro assessment and in vivo infection imaging using Escherichia coli-bearing mice by targeting bacterial lipopolysaccharides with PET/CT. Following DOTA-conjugation, the compound was verified for its cytotoxic and bacterial binding behaviour and compound stability, followed by 68Gallium-radiolabeling. μPET/CT using 68Ga-DOTA-TBIA101 was employed to detect muscular E. coli-infection in BALB/c mice, as warranted by the in vitro results. 68Ga-DOTA-TBIA101-PET detected E. coli-infected muscle tissue (SUV=1.3-2.4) > noninfected thighs (P=0.322) > forearm muscles (P=0.092) > background (P=0.021) in the same animal. Normalization of the infected thigh muscle to reference tissue showed a ratio of 3.0 ± 0.8 and a ratio of 2.3 ± 0.6 compared to the identical healthy tissue. The majority of the activity was cleared by renal excretion. The latter findings warrant further preclinical imaging studies of greater depth, as the DOTA-conjugation did not compromise the TBIA101's capacity as targeting vector.
CITATION STYLE
Mokaleng, B. B., Ebenhan, T., Ramesh, S., Govender, T., Kruger, H. G., Parboosing, R., … Sathekge, M. M. (2015). Synthesis, 68Ga-radiolabeling, and preliminary in vivo assessment of a depsipeptide-derived compound as a potential PET/CT infection imaging agent. BioMed Research International, 2015. https://doi.org/10.1155/2015/284354
Mendeley helps you to discover research relevant for your work.