Crossbridge mechanism(s) examined by temperature perturbation studies on muscle

4Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.
Get full text

Abstract

An overall view of the contractile process that has emerged from temperature- studies on active muscle is outlined. In isometric muscle, a small rapid temperature-jump (T-jump) enhances an early, pre-phosphate release, step in the acto-myosin (crossbridge) ATPase cycle and induces a characteristic rise in force indicating that crossbridge force generation is endothermic (force rises when heat is absorbed). Sigmoidal temperature dependence of steady force is largely due to the endothermic nature of force generation. During shortening, when muscle force is decreased, the T-jump force generation is enhanced; conversely, when a muscle is lengthening and its force increased, the T-jump force generation is inhibited. Taking T-jump force generation as a signature of the crossbridge - ATPase cycle, the results suggest that during lengthening the ATPase cycle is truncated before endothermic force generation, whereas during shortening this step and the ATPase cycle, are accelerated; this readily provides a molecular basis for the Fenn effect. © Springer Science+Business Media, LLC 2010.

Cite

CITATION STYLE

APA

Ranatunga, K. W., & Coupland, M. E. (2010). Crossbridge mechanism(s) examined by temperature perturbation studies on muscle. Advances in Experimental Medicine and Biology. https://doi.org/10.1007/978-1-4419-6366-6_14

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free