Simulated reduction of hypoxia in the northern Gulf of Mexico due to phosphorus limitation

37Citations
Citations of this article
38Readers
Mendeley users who have this article in their library.

Abstract

Excess nutrient loading from the Mississippi-Atchafalaya River system promotes the seasonal development of hypoxic bottom waters on the Louisiana shelf with detrimental effects on the benthic fauna. In the Mississippi River plume, primary production becomes phosphorus-limited between May and July at the peak of nutrient loading, displacing a portion of primary production and depositional fluxes westward. Here we quantitatively assessed, for the first time, the effect of phosphorus limitation on hypoxia development in the Mississippi-Atchafalaya River plume using a realistic physical-biogeochemical model. Results indicate that, despite a redistribution of respiration processes toward the western shelf, phosphorus limitation does not promote a westward expansion or relocation of hypoxia, as previously speculated. Rather, the onset of hypoxia was delayed and the size of the hypoxic zone reduced. Sensitivity experiments showed that this feature is robust in our model. Results from simulations with altered river input indicate that, despite phosphorus limitation, the co-reduction of nitrogen and phosphorus loads remains the best strategy to reduce hypoxia. Yet, even though nutrient load reductions have an immediate effect on hypoxia in this analysis, a 50% reduction in both nutrients will not be sufficient to meet the Gulf Hypoxia action plan goal of a 5·103 km2 hypoxic area.

Cite

CITATION STYLE

APA

Laurent, A., & Fennel, K. (2014). Simulated reduction of hypoxia in the northern Gulf of Mexico due to phosphorus limitation. Elementa, 2. https://doi.org/10.12952/journal.elementa.000022

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free