Evaluation of the synergistic olfactory effects of diacetyl, acetaldehyde, and acetoin in a yogurt matrix using odor threshold, aroma intensity, and electronic nose analyses

54Citations
Citations of this article
68Readers
Mendeley users who have this article in their library.

Abstract

Despite intensive analyses of yogurt flavor, the synergistic effects of the key aroma compounds on sensory responses and their optimum concentration ranges remain less well-documented. This study investigated the odor thresholds, optimum concentration ranges, and perceptual actions of diacetyl, acetaldehyde, and acetoin in a yogurt matrix. Our results show that the odor thresholds of diacetyl, acetaldehyde, and acetoin in the yogurt matrix were 5.43, 15.4, and 29.0 mg/L, respectively, which were significantly higher than the corresponding values in water. The optimum diacetyl, acetaldehyde, and acetoin concentration ranges were found to be 6.65 to 9.12, 25.9 to 35.5, and 37.3 to 49.9 mg/L, respectively. In Feller's additive model, the addition of each compound led to a significant reduction in their odor threshold in the yogurt matrix, thus demonstrating the synergistic effects of the compounds. In the σ-τ plot, various concentrations of compounds were associated with various degrees of additive behavior with respect to the aroma intensity of the yogurt matrix, thus demonstrating the synergism among these compounds in increasing the overall aroma intensity. The optimal simultaneous concentration ratio of diacetyl:acetaldehyde:acetoin was determined to be 4.00:16.0:32.0 mg/L. The specific synergistic effects were also confirmed by an electronic nose analysis and aroma profile comparison. In summary, these 3 aroma compounds exhibited synergistic effects in a yogurt matrix, thus providing a theoretical basis for the enhancement of flavors in dairy products.

Cite

CITATION STYLE

APA

Tian, H., Yu, B., Yu, H., & Chen, C. (2020). Evaluation of the synergistic olfactory effects of diacetyl, acetaldehyde, and acetoin in a yogurt matrix using odor threshold, aroma intensity, and electronic nose analyses. Journal of Dairy Science, 103(9), 7957–7967. https://doi.org/10.3168/jds.2019-17495

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free