Protection from infectious disease by the host immune response requires specific molecular recognition of unique antigenic determinants of a given pathogen. An epitope is an antigenic determinant which: 1) specifically stimulates the immune response (either B or T cell mediated); and 2) is acted upon by the products of these protective mechanisms. In B cell immunity, antibodies produced from stimulation by specific epitopes recognize and bind to these same antigenic structures. Identification of protective epitopes is extremely valuable to successful vaccine development. In order to be protective these antibodies must, in addition to recognition and binding, interfere with some vital step in pathogenesis such as adherence or toxin action. Protein B cell epitopes are frequently composed of the side chains (R-groups) of the amino acids found at solvent-exposed surfaces. These epitopes are classified as continuous (also linear or sequential) if composed of a single antibody-recognizing element located at a single locus of the primary structure. They are discontinuous (or assembled) if more than one physically separated entity is involved. T cell epitopes are peptides on the surface of antigen-presenting cells (macrophages, dendritic cells, and B cells) that are bound to major histocompatibility proteins; the T cell recognizes this peptide-MHC complex.
CITATION STYLE
Castric, P. A., & Cassels, F. J. (1997). Peptide epitope mapping in vaccine development: Introduction. Journal of Industrial Microbiology and Biotechnology. https://doi.org/10.1038/sj.jim.2900377
Mendeley helps you to discover research relevant for your work.