The cost of cortical computation

749Citations
Citations of this article
841Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Electrophysiological recordings show that individual neurons in cortex are strongly activated when engaged in appropriate tasks, but they tell us little about how many neurons might be engaged by a task, which is important to know if we are to understand how cortex encodes information. For human cortex, I estimate the cost of individual spikes, then, from the known energy consumption of cortex, I establish how many neurons can be active concurrently. The cost of a single spike is high, and this severely limits, possibly to fewer than 1%, the number of neurons that can be substantially active concurrently. The high cost of spikes requires the brain not only to use representational codes that rely on very few active neurons, but also to allocate its energy resources flexibly among cortical regions according to task demand. The latter constraint explains the investment in local control of hemodynamics, exploited by functional magnetic resonance imaging, and the need for mechanisms of selective attention.

Cite

CITATION STYLE

APA

Lennie, P. (2003). The cost of cortical computation. Current Biology, 13(6), 493–497. https://doi.org/10.1016/S0960-9822(03)00135-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free