ASR is the use of system software and hardware based techniques to identify and process human voice. In this research, Tamil words are analyzed, segmented as syllables, followed by feature extraction and recognition. Syllables are segmented using short term energy and segmentation is done in order to minimize the corpus size. The algorithm for syllable segmentation works by performing the STE function of the continuous speech signal. The proposed approach for speech recognition uses the combination of Mel-Frequency Cepstral Coefficients (MFCC) and Linear Predictive Coding (LPC). MFCC features are used to extract a feature vector containing all information about the linguistic message. The LPC affords a robust, dependable and correct technique for estimating the parameters that signify the vocal tract system.LPC features can reduce the bit rate of speech (i.e reducing the measurement of transmitting signal).The combined feature extraction technique will minimize the size of transmitting signal. Then the proposed FE algorithm is evaluated on the speech corpus using the Random forest approach. Random forest is an effective algorithm which can build a reliable training model as its training time is less because the classifier works on the subset of features alone.
CITATION STYLE
S, N., A, Dr. R., & S, Ms. G. (2020). Speech Recognition System for Isolated Tamil Words using Random Forest Algorithm. International Journal of Recent Technology and Engineering (IJRTE), 9(1), 2431–2435. https://doi.org/10.35940/ijrte.a1467.059120
Mendeley helps you to discover research relevant for your work.