Vaccine candidates for dengue virus type 1 (DEN1) generated by replacement of the structural genes of rDEN4 and rDEN4Δ30 with those of DEN1

41Citations
Citations of this article
71Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background. Antigenic chimeric viruses have previously been generated in which the structural genes of recombinant dengue virus type 4 (rDEN4) have been replaced with those derived from DEN2 or DEN3. Two vaccine candidates were identified, rDEN2/4Δ30(ME) and rDEN3/4Δ30(ME), which contain the membrane (M) precursor and envelope (E) genes of DEN2 and DEN3, respectively, and a 30 nucleotide deletion (Δ30) in the 3' untranslated region of the DEN4 backbone. Based on the promising preclinical phenotypes of these viruses and the safety and immunogenicity of rDEN2/4Δ30(ME) in humans, we now describe the generation of a panel of four antigenic chimeric DEN4 viruses using either the capsid (C), M, and E (CME) or ME structural genes of DEN1 Puerto Rico/94 strain. Results. Four antigenic chimeric viruses were generated and found to replicate efficiently in Vero cells: rDEN1/4(CME), rDEN1/ 4Δ30(CME), rDEN1/4(ME), and rDEN1/4Δ30(ME). With the exception of rDEN1/4(ME), each chimeric virus was significantly attenuated in a SCID-HuH-7 mouse xenograft model with a 25-fold or greater reduction in replication compared to wild type DEN1. In rhesus monkeys, only chimeric viruses with the Δ30 mutation appeared to be attenuated as measured by duration and magnitude of viremia. rDEN1/4Δ30(CME) appeared over-attenuated since it failed to induce detectable neutralizing antibody and did not confer protection from wild type DEN1 challenge. In contrast, rDEN1/4Δ30(ME) induced 66% seroconversion and protection from DEN1 challenge. Presence of the Δ30 mutation conferred a significant restriction in mosquito infectivity upon rDEN1/4Δ30(ME) which was shown to be non-infectious for Aedes aegypti fed an infectious bloodmeal. Conclusion. The attenuation phenotype in SCID-HuH-7 mice, rhesus monkeys, and mosquitoes and the protective immunity observed in rhesus monkeys suggest that rDEN1/4Δ30(ME) should be considered for evaluation in a clinical trial. © 2007 Blaney et al; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Blaney, J. E., Sathe, N. S., Hanson, C. T., Firestone, C. Y., Murphy, B. R., & Whitehead, S. S. (2007). Vaccine candidates for dengue virus type 1 (DEN1) generated by replacement of the structural genes of rDEN4 and rDEN4Δ30 with those of DEN1. Virology Journal, 4. https://doi.org/10.1186/1743-422X-4-23

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free