Why Python?

  • Garita M
N/ACitations
Citations of this article
68Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Studies of stimulus-response coupling have benefitted from the availability of permeabilization techniques, whereby putative second messengers and intracellular modulators can be introduced into the cell interior. Electropermeabilization, which uses high-intensity electric fields to breach the plasma membrane, creates small pores, permitting access of solutes with molecular masses below 700 KDa. Neutrophils permeabilized by this technique, but not intact cells, discharged lysosomal constituents when exposed to micromolar levels of Ca2+. Secretion by electroporated neutrophils was significantly enhanced by the presence of Mg-ATP (0.3-1.0 mM). Contrary to expectations, it was determined that ATP was not the only nucleotide which enhanced Ca2(+)-induced secretion in the presence of Mg2+. Not only could GTP, XTP, ITP, UTP or ADP partially or completely replace ATP, but even non-hydrolyzable nucleotides such as ADP beta S ATP gamma S, and App[NH]p were effective. GTP gamma S and GDP beta S were inhibitory, while Gpp[NH]p was inactive. None of these nucleotides induced secretion on its own. In contrast, neutrophils which were permeabilized and then washed, were only slightly activated by Mg-ATP and other nucleotides; even the response to Ca2+ alone was less. This hyporesponsiveness of washed cells proved to be due to a time-dependent deactivation of the permeabilized neutrophils taking place at 4 degrees C. In an effort to assess the role for protein kinase C (PKC) in secretion in this system, we examined the effects of phorbol myristate acetate (PMA), a PKC agonist. PMA enhanced degranulation induced by Ca2+ by lowering the requirement for this divalent cation; enhancement by PMA was not dependent upon exogenous ATP. Three inhibitors of PKC with varying specificity, namely H-7, K-252a, and staurosporine, all abrogated PMA-enhanced secretion. These agents also inhibited secretion stimulated by Ca2+ plus ATP in parallel with that induced by Ca2+ plus PMA, strongly suggesting a role for PKC in modulation of degranulation by ATP. Our results show that electropermeabilized neutrophils provide a convenient, useful model for stimulus-secretion coupling. These data also suggest that the 'requirement' for Mg-ATP, which has been observed in other permeabilized cell systems, is not simply for metabolic energy or as a substrate for kinases. It is possible that these nucleotides all interact with a recently described neutrophil receptor for adenine nucleotides or with a recently postulated exocytosis-linked G-protein

Cite

CITATION STYLE

APA

Garita, M. (2021). Why Python? In Applied Quantitative Finance (pp. 1–17). Springer International Publishing. https://doi.org/10.1007/978-3-030-29141-9_1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free