Wetting transitions in droplet drying on soft materials

55Citations
Citations of this article
103Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Droplet interactions with compliant materials are familiar, but surprisingly complex processes of importance to the manufacturing, chemical, and garment industries. Despite progress—previous research indicates that mesoscopic substrate deformations can enhance droplet drying or slow down spreading dynamics—our understanding of how the intertwined effects of transient wetting phenomena and substrate deformation affect drying remains incomplete. Here we show that above a critical receding contact line speed during drying, a previously not observed wetting transition occurs. We employ 4D confocal reference-free traction force microscopy (cTFM) to quantify the transient displacement and stress fields with the needed resolution, revealing high and asymmetric local substrate deformations leading to contact line pinning, illustrating a rate-dependent wettability on viscoelastic solids. Our study has significance for understanding the liquid removal mechanism on compliant substrates and for the associated surface design considerations. The developed methodology paves the way to study complex dynamic compliant substrate phenomena.

Cite

CITATION STYLE

APA

Gerber, J., Lendenmann, T., Eghlidi, H., Schutzius, T. M., & Poulikakos, D. (2019). Wetting transitions in droplet drying on soft materials. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-12093-w

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free