Comparison of biophysical and satellite predictors for wheat yield forecasting in Ukraine

Citations of this article
Mendeley users who have this article in their library.


Winter wheat crop yield forecasting at national, regional and local scales is an extremely important task. This paper aims at assessing the efficiency (in terms of prediction error minimization) of satellite and biophysical model based predictors assimilation into winter wheat crop yield forecasting models at different scales (region, county and field) for one of the regions in central part of Ukraine. Vegetation index NDVI, as well as different biophysical parameters (LAI and fAPAR) derived from satellite data and WOFOST crop growth model are considered as predictors of winter wheat crop yield forecasting model. Due to very short time series of reliable statistics (since 2000) we consider single factor linear regression. It is shown that biophysical parameters (fAPAR and LAI) are more preferable to be used as predictors in crop yield forecasting regression models at each scale. Correspondent models possess much better statistical properties and are more reliable than NDVI based model. The most accurate result in current study has been obtained for LAI values derived from SPOT-VGT (at 1 km resolution) on county level. At field level, a regression model based on satellite derived LAI significantly outperforms the one based on LAI simulated with WOFOST.




Kolotii, A., Kussul, N., Shelestov, A., Skakun, S., Yailymov, B., Basarab, R., … Ostapenko, V. (2015). Comparison of biophysical and satellite predictors for wheat yield forecasting in Ukraine. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives (Vol. 40, pp. 39–44). International Society for Photogrammetry and Remote Sensing.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free