—This work is aimed at providing a neuro-fuzzy system for heart attack detection. Theneuro-fuzzy system was designed with eight input field and one output field. The input variables are heart rate, exercise, blood pressure, age, cholesterol, chest pain type, blood sugar and sex. The output detects the risk levels of patients which are classified into 4 different fields: very low, low, high and very high. The data set used was extracted from the database and modeled in order to make it appropriate for the training, then the initial FIS structure was generated, the network was trained with the set of training data after which it was tested and validated with the set of testing data. The output of the system was designed in a way that the patient can use it personally. The patient just need to supply some values which serve as input to the system and based on the values supplied the system will be able to predict the risk level of the patient.
CITATION STYLE
Opeyemi, O., & Justice, E. O. (2012). Development of Neuro-fuzzy System for Early Prediction of Heart Attack. International Journal of Information Technology and Computer Science, 4(9), 22–28. https://doi.org/10.5815/ijitcs.2012.09.03
Mendeley helps you to discover research relevant for your work.