This paper focuses on reducing the computational cost of the Monte Carlo method for uncertainty propagation. Recently, Multi-Fidelity Monte Carlo (MFMC) method [46, 48] and Multi-Level Monte Carlo (MLMC) method [44, 29] were introduced to reduce the computational cost of Monte Carlo method by making use of low- fidelity models that are cheap to an evaluation in addition to the high-fidelity models. In this paper, we use machine learning techniques to combine the features of both the MFMC method and the MLMC method into a single framework called Multi-Fidelity- Multi-Level Monte Carlo (MFML-MC) method. In MFML-MC method, we use a hierarchy of proper orthogonal decomposition (POD) based approximations of high- fidelity outputs to formulate a MLMC framework. Next, we utilize Gradient Boosted Tree Regressor (GBTR) to evolve the dynamics of POD based reduced order model (ROM) [54] on every level of the MLMC framework. Finally, we incorporate MFMC method in order to exploit the POD ROM as a level specific low-fidelity model in the MFML-MC method. We compare the performance of MFML-MC method with the Monte Carlo method that uses either a high-fidelity model or a single low-fidelity model on two subsurface flow problems with random permeability field. Numerical results suggest that MFML-MC method provides an unbiased estimator with speedups by orders of magnitude in comparison to Monte Carlo method that uses high-fidelity model only.
CITATION STYLE
Khan, N. K. J., & Elsheikh, A. H. (2019). A machine learning based hybrid Multi-Fidelity Multi-Level Monte Carlo method for uncertainty quantification. Frontiers in Environmental Science, 7(JUN). https://doi.org/10.3389/fenvs.2019.00105
Mendeley helps you to discover research relevant for your work.