Background: Hypoxia inducible factor 1 (HIF-1) is a key transcriptional factor activated during cerebral ischemia, which regulates a great number of downstream genes, including those associated with cell death. In the present study, we aimed to test the hypothesis that post-ischemic HIF-1α up-regulation might promote autophagy activation; thereby, HIF-1α inhibitor 2ME2 might prevent neurons from ischemic injury through inhibiting autophagy. Methods: Global ischemia was induced using the four-vessel occlusion model (4-VO) in Sprague-Dawley rats (male, 250-280g). 2-Methoxyestradiol (2ME2, 5mg/kg, i.p.) was administrated to down-regulate HIF-1α expression. Post-ischemic beclin-1 and LC3 protein expression was determined at different time points through Western blot assay. Neuronal injury was determined by cresyl violet staining and TUNEL staining in coronal histological sections. Results: The expression of beclin-1 and the ratio of LC3-II/LC3-I increased significantly at 12 and 24 h after ischemia. 2ME2 could remarkably inhibit the up-regulation of beclin-1 and the increase of LC3-II/LC3-I ratio during reperfusion. Moreover, 2ME2 and 3-MA exhibited powerful protective effects against ischemic/reperfusion induced neuronal injury. Conclusions: This study confirmed that autophagy participated in post-ischemic neuronal injury. 2ME2, a HIF-1α inhibitor, might significantly decrease autophagy activation after cerebral ischemia and relieve post-ischemic neuronal injury. Our findings demonstrate that autophagy could be a potential target for neuronal protection after cerebral ischemia.
CITATION STYLE
Xin, X. Y., Pan, J., Wang, X. Q., Ma, J. F., Ding, J. Q., Yang, G. Y., & Chen, S. D. (2011). 2-methoxyestradiol attenuates autophagy activation after global ischemia. Canadian Journal of Neurological Sciences, 38(4), 631–638. https://doi.org/10.1017/S031716710001218X
Mendeley helps you to discover research relevant for your work.