Membrane currents in retinal bipolar cells of the axolotl

62Citations
Citations of this article
38Readers
Mendeley users who have this article in their library.
Get full text

Abstract

By whole-cell patch-clamping bipolar cells isolated from enzymatically dissociated retinae, we have studied the nonsynaptic ionic currents that may play a role in shaping the bipolar cell light response and in determining the level of voltage noise in these cells. Between -30 and -70 mV, the membrane current of isolated bipolar cells is time independent, and the input resistance is 1-2 Gω Depolarization past -30 mV activates an outward current (in <100 ms), which then inactivates slowly (~1 s). Inactivation of this current is removed by hyperpolarization over the range -20 to -80 mV. This current is carried largely by K ions. It is not activated by internal Ca2+. The membrane current of isolated bipolar cells is noisy, and the variance of this noise has a minimum between -40 and -60 mV. At its minimum, the standard deviation of the voltage noise produced by nonsynaptic membrane currents is at least 100 µV. The membrane currents of depolarizing bipolar cells in slices of retina were investigated by whole-cell patch-clamping. Their membrane properties were similar to those of isolated bipolar cells, but with a larger membrane capacitance and a smaller input resistance. Their membrane current noise also showed a minimum near -40 to -60 mV. The time-dependent potassium current in axolotl bipolar cells is not significantly activated in the physiological potential range and can therefore play little role in shaping the bipolar cells’ voltage response to light. Differences in the waveform of the light response of bipolar cells and photoreceptors must be ascribed to shaping by the synapses between these cells. The noise minimum in the bipolar membrane current is near the dark potential of these cells, and this may be advantageous for the detection of weak signals by the bipolar cells. © 1988, Rockefeller University Press., All rights reserved.

Cite

CITATION STYLE

APA

Tessier-Lavigne, M., Attwell, D., Mobbs, P., & Wilson, M. (1988). Membrane currents in retinal bipolar cells of the axolotl. Journal of General Physiology, 91(1), 49–72. https://doi.org/10.1085/jgp.91.1.49

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free